Published in collaboration with NCMS
Digital Manufacturing Report

News & information about the fast-moving world
of digital manufacturing, modeling & simulation

Language Flags

MIT Boosts Human-Robot Interaction with Cross-Training


CAMBRIDGE, Mass., Feb. 14 — Spending a day in someone else’s shoes can help us to learn what makes them tick. Now the same approach is being used to develop a better understanding between humans and robots, to enable them to work together as a team.

Robots are increasingly being used in the manufacturing industry to perform tasks that bring them into closer contact with humans. But while a great deal of work is being done to ensure robots and humans can operate safely side-by-side, more effort is needed to make robots smart enough to work effectively with people, says Julie Shah, an assistant professor of aeronautics and astronautics at MIT and head of the Interactive Robotics Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

“People aren’t robots, they don’t do things the same way every single time,” Shah says. “And so there is a mismatch between the way we program robots to perform tasks in exactly the same way each time and what we need them to do if they are going to work in concert with people.”

Most existing research into making robots better team players is based on the concept of interactive reward, in which a human trainer gives a positive or negative response each time a robot performs a task.

However, human studies carried out by the military have shown that simply telling people they have done well or badly at a task is a very inefficient method of encouraging them to work well as a team.

So Shah and PhD student Stefanos Nikolaidis began to investigate whether techniques that have been shown to work well in training people could also be applied to mixed teams of humans and robots. One such technique, known as cross-training, sees team members swap roles with each other on given days. “This allows people to form a better idea of how their role affects their partner and how their partner’s role affects them,” Shah says.

In a paper to be presented at the International Conference on Human-Robot Interaction in Tokyo in March, Shah and Nikolaidis will present the results of experiments they carried out with a mixed group of humans and robots, demonstrating that cross-training is an extremely effective team-building tool.

To allow robots to take part in the cross-training experiments, the pair first had to design a new algorithm to allow the devices to learn from their role-swapping experiences. So they modified existing reinforcement-learning algorithms to allow the robots to take in not only information from positive and negative rewards, but also information gained through demonstration. In this way, by watching their human counterparts switch roles to carry out their work, the robots were able to learn how the humans wanted them to perform the same task.

Each human-robot team then carried out a simulated task in a virtual environment, with half of the teams using the conventional interactive reward approach, and half using the cross-training technique of switching roles halfway through the session. Once the teams had completed this virtual training session, they were asked to carry out the task in the real world, but this time sticking to their own designated roles.

Shah and Nikolaidis found that the period in which human and robot were working at the same time — known as concurrent motion — increased by 71 percent in teams that had taken part in cross-training, compared to the interactive reward teams. They also found that the amount of time the humans spent doing nothing — while waiting for the robot to complete a stage of the task, for example — decreased by 41 percent.

What’s more, when the pair studied the robots themselves, they found that the learning algorithms recorded a much lower level of uncertainty about what their human teammate was likely to do next — a measure known as the entropy level — if they had been through cross-training.

Finally, when responding to a questionnaire after the experiment, human participants in cross-training were far more likely to say the robot had carried out the task according to their preferences than those in the reward-only group, and reported greater levels of trust in their robotic teammate. “This is the first evidence that human-robot teamwork is improved when a human and robot train together by switching roles, in a manner similar to effective human team training practices,” Nikolaidis says.

Shah believes this improvement in team performance could be due to the greater involvement of both parties in the cross-training process. “When the person trains the robot through reward it is one-way: The person says ‘good robot’ or the person says ‘bad robot,’ and it’s a very one-way passage of information,” Shah says. “But when you switch roles the person is better able to adapt to the robot’s capabilities and learn what it is likely to do, and so we think that it is adaptation on the person’s side that results in a better team performance.”

-----

Source: MIT

RSS Feeds

Subscribe to All Content


Feature Articles

Titan Puts a New Spin on GE’s Wind Turbine Research

Unlike traditional energy sources, wind is a trouble to tame, which has led GE to turn to advanced simulations at Oak Ridge National Laboratory to put the technology on track to cover 12 percent of the world's energy production.
Read more...

Lighting a Fire Under Combustion Simulation

Combustion simulation might seem like the ultimate in esoteric technologies, but auto companies, aircraft firms and fuel designers need increasingly sophisticated software to serve the needs of 21st century engine designs. HPCwire recently got the opportunity to take a look at Reaction Design, one of the premier makers of combustion simulation software, and talk with its CEO, Bernie Rosenthal.
Read more...

D-Wave Sells First Quantum Computer

On Wednesday, D-Wave Systems made history by announcing the sale of the world's first commercial quantum computer. The buyer was Lockheed Martin Corporation, who will use the machine to help solve some of their "most challenging computation problems." D-Wave co-founder and CTO Geordie Rose talks about the new system and the underlying technology.
Read more...

Short Takes

Local Motors and ORNL Partner for Automotive Manufacturing

Jan 24, 2014 | Local Motors, a vehicle innovator, and the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) have announced a new partnership that they hope will bring change to the automotive industry.
Read more...

Robots Showcase Skills at DRC

Jan 22, 2014 | A month ago, the DARPA Robotics Challenge Trials (DRC) commenced. The main goal of the event was to aid in the development of robots that will someday respond to natural or even man-made disasters. At this year’s DRC, prototype robots from 16 teams were put through a series of trials in which they were to showcase their skills.
Read more...

Advanced Modeling Benefits Wind Farms

May 25, 2011 | Advanced computing resources optimize the site selection of wind farms.
Read more...

Not Your Parents' CFD

Oct 13, 2010 | Outdated beliefs stand in the way of greater CFD adoption.
Read more...

Manufacturers Turn to HPC to Cut Testing Costs

Oct 06, 2010 | Supercomputing saves money by reducing the need for physical testing.
Read more...

Sponsored Whitepapers

Technical Computing for a New Era

07/30/2013 | IBM | This white paper examines various means of adapting technical computing tools to accelerate product and services innovation across a range of commercial industries such as manufacturing, financial services, energy, healthcare, entertainment and retail. No longer is technically advanced computing limited to the confines of big government labs and academic centers. Today it is available to a wide range of organizations seeking a competitive edge.

The UberCloud HPC Experiment: Compendium of Case Studies

06/25/2013 | Intel | The UberCloud HPC Experiment has achieved the volunteer participation of 500 organizations and individuals from 48 countries with the aim of exploring the end-to-end process employed by digital manufacturing engineers to access and use remote computing resources in HPC centers and in the cloud. This Compendium of 25 case studies is an invaluable resource for engineers, managers and executives who believe in the strategic importance of applying advanced technologies to help drive their organization’s productivity to perceptible new levels.

Conferences and Events

Featured Events



Copyright © 2011-2014 Tabor Communications, Inc. All Rights Reserved.
Digital Manufacturing Report is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications Inc. is prohibited.
Powered by Xtenit.