Published in collaboration with NCMS
Digital Manufacturing Report

News & information about the fast-moving world
of digital manufacturing, modeling & simulation

Language Flags

Molecular Machine Could Yield More Efficient Manufacturing


MANCHESTER, Jan. 11 – An industrial revolution on a minute scale is taking place in laboratories at The University of Manchester with the development of a highly complex machine that mimics how molecules are made in nature.

The artificial molecular machine developed by Professor David Leigh FRS and his team in the School of Chemistry is the most advanced molecular machine of its type in the world. Its development has been published in the journal Science.

Professor Leigh explains: "The development of this machine which uses molecules to make molecules in a synthetic process is similar to the robotic assembly line in car plants. Such machines could ultimately lead to the process of making molecules becoming much more efficient and cost effective. This will benefit all sorts of manufacturing areas as many manmade products begin at a molecular level. For example, we're currently modifying our machine to make drugs such as penicillin."

The machine is just a few nanometres long (a few millionths of a millimetre) and can only be seen using special instruments. Its creation was inspired by natural complex molecular factories where information from DNA is used to programme the linking of molecular building blocks in the correct order. The most extraordinary of these factories is the ribosome, a massive molecular machine found in all living cells.

Professor Leigh's machine is based on the ribosome. It features a functionalized nanometre-sized ring that moves along a molecular track, picking up building blocks located on the path and connecting them together in a specific order to synthesize the desired new molecule.

First the ring is threaded onto a molecular strand using copper ions to direct the assembly process. Then a "reactive arm" is attached to the rest of the machine and it starts to operate. The ring moves up and down the strand until its path is blocked by a bulky group. The reactive arm then detaches the obstruction from the track and passes it to another site on the machine, regenerating the active site on the arm. The ring is then free to move further along the strand until its path is obstructed by the next building block. This, in turn, is removed and passed to the elongation site on the ring, thus building up a new molecular structure on the ring. Once all the building blocks are removed from the track, the ring de-threads and the synthesis is over.

Professor Leigh says the current prototype is still far from being as efficient as the ribosome: "The ribosome can put together 20 building blocks a second until up to 150 are linked. So far we have only used our machine to link together 4 blocks and it takes 12 hours to connect each block. But you can massively parallel the assembly process: We are already using a million million million (1018) of these machines working in parallel in the laboratory to build molecules."

Professor Leigh continues: "The next step is to start using the machine to make sophisticated molecules with more building blocks. The potential is for it to be able to make molecules that have never been seen before. They're not made in nature and can't be made synthetically because of the processes currently used. This is a very exciting possibility for the future."

Video courtesy of Miriam Wilson. 

-----

Source: University of Manchester

RSS Feeds

Subscribe to All Content


Feature Articles

Lighting a Fire Under Combustion Simulation

Combustion simulation might seem like the ultimate in esoteric technologies, but auto companies, aircraft firms and fuel designers need increasingly sophisticated software to serve the needs of 21st century engine designs. HPCwire recently got the opportunity to take a look at Reaction Design, one of the premier makers of combustion simulation software, and talk with its CEO, Bernie Rosenthal.
Read more...

D-Wave Sells First Quantum Computer

On Wednesday, D-Wave Systems made history by announcing the sale of the world's first commercial quantum computer. The buyer was Lockheed Martin Corporation, who will use the machine to help solve some of their "most challenging computation problems." D-Wave co-founder and CTO Geordie Rose talks about the new system and the underlying technology.
Read more...

NVIDIA Revs Up Tesla GPU

GPU maker NVIDIA has ratcheted up the core count and clock speed on its Tesla GPU processor. The new M2090 module for servers delivers 665 double precision gigaflops, representing close to a 30 percent increase over the previous generation Tesla part. The memory bandwidth on the device was bumped up as well, from 150 GB/second to 178 GB/second. The new GPU boosts performance significantly across a number of HPC codes.
Read more...

Short Takes

Advanced Modeling Benefits Wind Farms

May 25, 2011 | Advanced computing resources optimize the site selection of wind farms.
Read more...

Not Your Parents' CFD

Oct 13, 2010 | Outdated beliefs stand in the way of greater CFD adoption.
Read more...

Manufacturers Turn to HPC to Cut Testing Costs

Oct 06, 2010 | Supercomputing saves money by reducing the need for physical testing.
Read more...

HPC Technology Makes Car Safety Job 1

Aug 05, 2010 | Automakers turn to computer simulations to design safer vehicles.
Read more...

UTC SimCenter Called ‘Gold Mine’ for Local Economy

Jul 14, 2010 | University research center could become economic catalyst for Chattanooga.
Read more...

Sponsored Whitepapers

Technical Computing for a New Era

07/30/2013 | IBM | This white paper examines various means of adapting technical computing tools to accelerate product and services innovation across a range of commercial industries such as manufacturing, financial services, energy, healthcare, entertainment and retail. No longer is technically advanced computing limited to the confines of big government labs and academic centers. Today it is available to a wide range of organizations seeking a competitive edge.

The UberCloud HPC Experiment: Compendium of Case Studies

06/25/2013 | Intel | The UberCloud HPC Experiment has achieved the volunteer participation of 500 organizations and individuals from 48 countries with the aim of exploring the end-to-end process employed by digital manufacturing engineers to access and use remote computing resources in HPC centers and in the cloud. This Compendium of 25 case studies is an invaluable resource for engineers, managers and executives who believe in the strategic importance of applying advanced technologies to help drive their organization’s productivity to perceptible new levels.

Conferences and Events

Featured Events



Copyright © 2011-2014 Tabor Communications, Inc. All Rights Reserved.
Digital Manufacturing Report is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications Inc. is prohibited.
Powered by Xtenit.