Published in collaboration with NCMS
Digital Manufacturing Report

News & information about the fast-moving world
of digital manufacturing, modeling & simulation

Language Flags

A Quantum Leap for Classical Computing

Quantum computing: the technology that could smash Moore's Law, allowing for unprecedented levels of computing power that could enable us to model highly complex processes – such as the functioning of the heart or brain – with relative ease, making it one of the most highly anticipated breakthroughs of the near future.

The goal is to harness the unique behavior of particles at the quantum scale. These “qubits,” with information stored in subatomic particles, can mimic transistor storage by existing in a state of “1” or “0,” (just like transistors,) as well as existing in a superposition of both states. As the number of qubits on a circuit increases, so does the number of possible states, resulting in an exponential increase in the amount of information contained within. To put that in perspective, a quantum computer with a mere hundred qubits would be capable of solving certain problems more quickly than the most powerful supercomputers today.

But, according to Chris Peikert, cryptographer and computing scientist at Georgia Institute of Technology, “There are quite vigorous debates about whether quantum computers will ever actually be built.” However, according to Natalie Wolchover of Simons Science News, even if this worst-case scenario comes to pass, the ideas and techniques fueling quantum research may help solve long-standing problems in classical computer science, mathematics and cryptography.

Most recently, quantum ideas have furthered data encryption schemes, developed a formula for the minimum length of error-correcting codes, and refuted an antiquated algorithm claiming to solve the traveling salesman problem, which seeks to determine the fastest route through multiple cities.

According to Oded Regev, a computer scientist working at New York University, the link between quantum computing theory and the solving classical computing problems is no coincidence, noting that “…there are so many instances when we 'think quantumly' and come up with a proof.”

This trend has led some researchers to change their viewpoint from regarding quantum computing as an obscure niche to a generalization of classical computing, while compelling others to brush up on their physics.

As researchers push the field of quantum computing forward, plenty of fingers will be crossed for a breakthrough. But even if their hopes are met with disappointment, researchers' efforts will likely yield even more interesting classical results.

Full story at Simons Foundation

RSS Feeds

Subscribe to All Content

Feature Articles

Titan Puts a New Spin on GE’s Wind Turbine Research

Unlike traditional energy sources, wind is a trouble to tame, which has led GE to turn to advanced simulations at Oak Ridge National Laboratory to put the technology on track to cover 12 percent of the world's energy production.

Lighting a Fire Under Combustion Simulation

Combustion simulation might seem like the ultimate in esoteric technologies, but auto companies, aircraft firms and fuel designers need increasingly sophisticated software to serve the needs of 21st century engine designs. HPCwire recently got the opportunity to take a look at Reaction Design, one of the premier makers of combustion simulation software, and talk with its CEO, Bernie Rosenthal.

D-Wave Sells First Quantum Computer

On Wednesday, D-Wave Systems made history by announcing the sale of the world's first commercial quantum computer. The buyer was Lockheed Martin Corporation, who will use the machine to help solve some of their "most challenging computation problems." D-Wave co-founder and CTO Geordie Rose talks about the new system and the underlying technology.

Short Takes

Local Motors and ORNL Partner for Automotive Manufacturing

Jan 24, 2014 | Local Motors, a vehicle innovator, and the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) have announced a new partnership that they hope will bring change to the automotive industry.

Advanced Modeling Benefits Wind Farms

May 25, 2011 | Advanced computing resources optimize the site selection of wind farms.

Not Your Parents' CFD

Oct 13, 2010 | Outdated beliefs stand in the way of greater CFD adoption.

Manufacturers Turn to HPC to Cut Testing Costs

Oct 06, 2010 | Supercomputing saves money by reducing the need for physical testing.

HPC Technology Makes Car Safety Job 1

Aug 05, 2010 | Automakers turn to computer simulations to design safer vehicles.

Sponsored Whitepapers

Technical Computing for a New Era

07/30/2013 | IBM | This white paper examines various means of adapting technical computing tools to accelerate product and services innovation across a range of commercial industries such as manufacturing, financial services, energy, healthcare, entertainment and retail. No longer is technically advanced computing limited to the confines of big government labs and academic centers. Today it is available to a wide range of organizations seeking a competitive edge.

The UberCloud HPC Experiment: Compendium of Case Studies

06/25/2013 | Intel | The UberCloud HPC Experiment has achieved the volunteer participation of 500 organizations and individuals from 48 countries with the aim of exploring the end-to-end process employed by digital manufacturing engineers to access and use remote computing resources in HPC centers and in the cloud. This Compendium of 25 case studies is an invaluable resource for engineers, managers and executives who believe in the strategic importance of applying advanced technologies to help drive their organization’s productivity to perceptible new levels.

Conferences and Events

Featured Events

Copyright © 2011-2014 Tabor Communications, Inc. All Rights Reserved.
Digital Manufacturing Report is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications Inc. is prohibited.
Powered by Xtenit.