Published in collaboration with NCMS
Digital Manufacturing Report

News & information about the fast-moving world
of digital manufacturing, modeling & simulation

Language Flags

Copper, Gold and Tin for Efficient Chips


They are particularly small, durable and economical: LEDs have conquered the automotive industry; it is already possible today to recognize the make of a car by the design of the LED headlights. Whether in the interior, displays, infotainment system or brake lights, parking lights or fog lights – a modern car offers many possibilities for LED technology to be used for lighting. Unlike the traditional halogen or xenon lights, light emitting diodes need LED drivers. Their most important task: they must continuously supply the light diodes with power. In addition, they are to carry out complex tasks and to control, for example, several LEDs in series, or switch individual ones on in multiple stages if the interior lighting is to be dimmable.

The requirements relating to the drivers are enormous: they must be immune to the high temperature and voltage differences in a car or be resistant to aggressive chemicals. In order to guarantee reliable luminosity, a higher voltage must flow through the circuits of the LED drivers. Researchers from the Fraunhofer Institute for Microelectronic Circuits and Systems IMS offer manufacturers a process to manufacture the chips that suit these applications: it is based on galvanization, a process in the semiconductor industry, in which special metals are deposited on the semiconductors.

Copper for increased current flow

However, Prof. Holger Vogt's department at the IMS, is backing copper, in particular. "This way, we can have more current flow through the chips", explains Vogt. That is important, because for most applications the chips must become smaller and smaller – the current that flows through them, however, stays the same. However, integrating new materials, such as a layer of copper, is not always without problems, since there are limits to the regular processes for manufacturing chips. It is for this reason that the scientists at the IMS specifically constructed a manufacturing line for "post processing" – the MST Lab & Fab – to be able to subsequently improve the chips on the substrate wafers, depending on the requirements of the application.

In addition to copper, the engineers are also able to deposit other metals or compounds such as copper-tin or gold-tin onto the chips. "These layers can be soldered", explains Vogt. That offers a substantial advantage: the cover can be soldered onto the chip, right there on the wafer. "The result is the smallest housing for a chip that can be had", says Vogt. It can be used to surround and protect sensitive sensors without negatively affecting their functionality. One example is bolometers, sensors that are used to measure temperature. Because the housings for bolometers must additionally also be put into a vacuum environment to provide accurate measurements, their manufacture to date has been very complex and thus expensive. However, with the help of the MST Lab & Fab, housings that are cost-effective and therefore suitable for mass production can be manufactured.

In addition, the researchers in the MST Lab & Fab have been able to construct complex components within a single housing. The are able to solder two chips, such as an opto-chip with highly sensitive photo sensors with a CMOS-Chip (Complementary Metal Oxide Semiconductor) which can measure individual photons, to each other, using the copper galvanization process. Such microelectronic components are suitable for night-vision devices or for low-light microscope applications.

-----

Source: Fraunhofer Institute for Microelectronic Circuits

RSS Feeds

Subscribe to All Content


Feature Articles

Titan Puts a New Spin on GE’s Wind Turbine Research

Unlike traditional energy sources, wind is a trouble to tame, which has led GE to turn to advanced simulations at Oak Ridge National Laboratory to put the technology on track to cover 12 percent of the world's energy production.
Read more...

Lighting a Fire Under Combustion Simulation

Combustion simulation might seem like the ultimate in esoteric technologies, but auto companies, aircraft firms and fuel designers need increasingly sophisticated software to serve the needs of 21st century engine designs. HPCwire recently got the opportunity to take a look at Reaction Design, one of the premier makers of combustion simulation software, and talk with its CEO, Bernie Rosenthal.
Read more...

D-Wave Sells First Quantum Computer

On Wednesday, D-Wave Systems made history by announcing the sale of the world's first commercial quantum computer. The buyer was Lockheed Martin Corporation, who will use the machine to help solve some of their "most challenging computation problems." D-Wave co-founder and CTO Geordie Rose talks about the new system and the underlying technology.
Read more...

Short Takes

Local Motors and ORNL Partner for Automotive Manufacturing

Jan 24, 2014 | Local Motors, a vehicle innovator, and the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) have announced a new partnership that they hope will bring change to the automotive industry.
Read more...

Robots Showcase Skills at DRC

Jan 22, 2014 | A month ago, the DARPA Robotics Challenge Trials (DRC) commenced. The main goal of the event was to aid in the development of robots that will someday respond to natural or even man-made disasters. At this year’s DRC, prototype robots from 16 teams were put through a series of trials in which they were to showcase their skills.
Read more...

Advanced Modeling Benefits Wind Farms

May 25, 2011 | Advanced computing resources optimize the site selection of wind farms.
Read more...

Not Your Parents' CFD

Oct 13, 2010 | Outdated beliefs stand in the way of greater CFD adoption.
Read more...

Manufacturers Turn to HPC to Cut Testing Costs

Oct 06, 2010 | Supercomputing saves money by reducing the need for physical testing.
Read more...

Sponsored Whitepapers

Technical Computing for a New Era

07/30/2013 | IBM | This white paper examines various means of adapting technical computing tools to accelerate product and services innovation across a range of commercial industries such as manufacturing, financial services, energy, healthcare, entertainment and retail. No longer is technically advanced computing limited to the confines of big government labs and academic centers. Today it is available to a wide range of organizations seeking a competitive edge.

The UberCloud HPC Experiment: Compendium of Case Studies

06/25/2013 | Intel | The UberCloud HPC Experiment has achieved the volunteer participation of 500 organizations and individuals from 48 countries with the aim of exploring the end-to-end process employed by digital manufacturing engineers to access and use remote computing resources in HPC centers and in the cloud. This Compendium of 25 case studies is an invaluable resource for engineers, managers and executives who believe in the strategic importance of applying advanced technologies to help drive their organization’s productivity to perceptible new levels.

Conferences and Events

Featured Events



Copyright © 2011-2014 Tabor Communications, Inc. All Rights Reserved.
Digital Manufacturing Report is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications Inc. is prohibited.
Powered by Xtenit.