Published in collaboration with NCMS
Digital Manufacturing Report

News & information about the fast-moving world
of digital manufacturing, modeling & simulation

Language Flags

Tetrapod Quantum Dot Synthesis US Patent Granted


CARSON CITY, Nev., Nov. 20 – Quantum Materials Corporation, Inc. proudly announces the USPTO patent grant of a fundamental disruptive technology for synthesis of Group II-VI inorganic tetrapod quantum dots. The patent, "Synthesis of Uniform Nanoparticle Shapes with High Selectivity" and invented by Professor Michael S. Wong's group at William Marsh Rice University, Houston, TX, for the first time gives precise control of both QD shape and dimension during synthesis and is adaptable to quantum dots production of industrial scale quantities. The new synthesis is a greener method using surfactants as would be found in laundry detergent instead of highly toxic chemicals used during industry standard small batch synthesis.

Quantum Materials Corporation, Inc.(QMC) has acquired the exclusive worldwide license for this patent and its wholly owned renewable energy subsidiary, Solterra Renewable Technologies, has the same rights specific to Quantum Dot Solar Applications. QMC last week announced a high quantum yield of 80% for a new class of tetrapod QD synthesized with this patented process.

According to a new market research report, "Quantum Dots (QD) Market – Global Forecast & Analysis (2012 – 2022)" published by MarketsandMarkets, the total market for Quantum dots is expected to reach $7.48 Billion by 2022, at a CAGR of 55.2% from 2012 to 2022.

The Rice University QD synthesis remarkably produces same-sized tetrapods, in which more than 92+ percent are full tetrapods, with a similar high degree of process control over QD shape, size, uniformity, and selectivity. The synthesis is applicable to a wide range of mono and hybrid Group II-VI tetrapod QD with/without shell and can optimize specific characteristics by modifying process parameters.

Across the broader QD industry however, other companies have been striving to increase production, but none have predicted scaling quantum dot production remotely close to multiple kilograms per day.

Quantum Materials Corporation's development of breakthrough software-controlled continuous flow chemistry process allows scaling of tetrapod quantum dot production to 100Kg/Day. Increasing production will transform tetrapod quantum dots from a novelty to a commodity, available across industries and applications where prior limited availability and high prices restricted product development. For example, 100Kg daily QD production can support a QD Solar Cell Plant producing one Gigawatt/year of R2R flexible QD solar cells at an industry competitive .75 cents/Watt at the start.

Tetrapod QD offer inherent advantages over spherical QD including higher brightness, truer and more colors, the use of less active material (QDs) for any application, higher photostability and therefore longer lifetime; which together more than justify their product development. OLEDs, for example, share design architecture similarities and would not require entirely new research to adapt to TQD-LEDs. Spherical Quantum dots, at the low price of $2000/gm. are 30 times more expensive than gold today.

It simply has not been economically feasible to commercialize QD applications due to their high cost, which stems from the difficulty of small batch manufacture, the inability to produce uniform, same size QD from batch to batch, and to promise a reliable, timely supply. Over the last half dozen years university and corporate quantum dot research has increased dramatically and there are ready QD applications that may now be "business planned" for joint ventures or possible licensing with Quantum Materials Corporation and Solterra Renewable Technologies.

Stephen B. Squires, CEO and President of Quantum Materials Corporation, Inc. and Solterra Renewable Technologies, Inc., said, "With the granting of the US Patent, tetrapod quantum dots are well positioned to revolutionize several industries in offering dramatic performance at cost effective levels. While the technology has been under review, we have continued to execute our vision to establish global manufacturing centers and strategic partnerships for creating dramatic value in our companies." Squires continued, "We are excited to continue our business plan with the IP protection offered by the granted allowances. Adoption of quantum dots will result in new classes of products with advanced features, improved performance, energy efficiency, and lower cost."

Art Lamstein, Director of Marketing for QMC and SRT added, "The timeline is moved forward to present day and market forecasts will need be rewritten for quantum dot based renewable energy, photovoltaics, biotech diagnostic assays, drug delivery platforms, theranostic cancer and other biomedicine treatments, QD-LED and opto-electronic devices, photonics, low power SSL lighting, batteries, fuel cells, thermo-QD applications, quantum computing, memory, and conductive inks (to name a few)."

About Quantum Materials Corporation, Inc., and its subsidiary, Solterra Renewable Technologies, Inc.

QUANTUM MATERIALS CORPORATION has a steadfast vision that advanced technology is the solution to global issues related to cost, efficiency and increasing energy usage. Quantum dot semiconductors enable a new level of performance in a wide array of established consumer and industrial products, including low cost flexible solar cells, low power lighting and displays and biomedical research applications. Quantum Materials Corporation intends to invigorate these markets through cost reduction and moving laboratory discovery to commercialization with volume manufacturing methods to establish a growing line of innovative high performance products.

SOLTERRA RENEWABLE TECHNOLOGIES, INC. is singularly positioned to lead the development of truly sustainable and cost-effective solar technology by introducing a new dimension of cost reduction by replacing silicon wafer-based solar cells with high-production, low-cost, efficient Quantum Dot-based solar cells. Solterra is a wholly-owned subsidiary of Quantum Materials, Inc.

-----

Source: Quantum Materials

RSS Feeds

Subscribe to All Content


Feature Articles

Titan Puts a New Spin on GE’s Wind Turbine Research

Unlike traditional energy sources, wind is a trouble to tame, which has led GE to turn to advanced simulations at Oak Ridge National Laboratory to put the technology on track to cover 12 percent of the world's energy production.
Read more...

Lighting a Fire Under Combustion Simulation

Combustion simulation might seem like the ultimate in esoteric technologies, but auto companies, aircraft firms and fuel designers need increasingly sophisticated software to serve the needs of 21st century engine designs. HPCwire recently got the opportunity to take a look at Reaction Design, one of the premier makers of combustion simulation software, and talk with its CEO, Bernie Rosenthal.
Read more...

D-Wave Sells First Quantum Computer

On Wednesday, D-Wave Systems made history by announcing the sale of the world's first commercial quantum computer. The buyer was Lockheed Martin Corporation, who will use the machine to help solve some of their "most challenging computation problems." D-Wave co-founder and CTO Geordie Rose talks about the new system and the underlying technology.
Read more...

Short Takes

Local Motors and ORNL Partner for Automotive Manufacturing

Jan 24, 2014 | Local Motors, a vehicle innovator, and the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) have announced a new partnership that they hope will bring change to the automotive industry.
Read more...

Robots Showcase Skills at DRC

Jan 22, 2014 | A month ago, the DARPA Robotics Challenge Trials (DRC) commenced. The main goal of the event was to aid in the development of robots that will someday respond to natural or even man-made disasters. At this year’s DRC, prototype robots from 16 teams were put through a series of trials in which they were to showcase their skills.
Read more...

Advanced Modeling Benefits Wind Farms

May 25, 2011 | Advanced computing resources optimize the site selection of wind farms.
Read more...

Not Your Parents' CFD

Oct 13, 2010 | Outdated beliefs stand in the way of greater CFD adoption.
Read more...

Manufacturers Turn to HPC to Cut Testing Costs

Oct 06, 2010 | Supercomputing saves money by reducing the need for physical testing.
Read more...

Sponsored Whitepapers

Technical Computing for a New Era

07/30/2013 | IBM | This white paper examines various means of adapting technical computing tools to accelerate product and services innovation across a range of commercial industries such as manufacturing, financial services, energy, healthcare, entertainment and retail. No longer is technically advanced computing limited to the confines of big government labs and academic centers. Today it is available to a wide range of organizations seeking a competitive edge.

The UberCloud HPC Experiment: Compendium of Case Studies

06/25/2013 | Intel | The UberCloud HPC Experiment has achieved the volunteer participation of 500 organizations and individuals from 48 countries with the aim of exploring the end-to-end process employed by digital manufacturing engineers to access and use remote computing resources in HPC centers and in the cloud. This Compendium of 25 case studies is an invaluable resource for engineers, managers and executives who believe in the strategic importance of applying advanced technologies to help drive their organization’s productivity to perceptible new levels.

Conferences and Events

Featured Events



Copyright © 2011-2014 Tabor Communications, Inc. All Rights Reserved.
Digital Manufacturing Report is a registered trademark of Tabor Communications, Inc. Use of this site is governed by our Terms of Use and Privacy Policy.
Reproduction in whole or in part in any form or medium without express written permission of Tabor Communications Inc. is prohibited.
Powered by Xtenit.